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ABSTRACT  
Video capsule endoscopy (VCE) is a noninvasive procedure for diagnosing small bowel (SB) lesions. During VCE 
procedures, the miniature camera captures thousands of images, requiring considerable time and effort from 
healthcare professionals to examine each image for abnormalities. This study aims to develop and evaluate a modified 
DenseNet-201 convolutional neural network (CNN) model to assist in the automatic classification of SB lesions in VCE 
images. A representative dataset of 5,899 images was created by merging two state-of-the-art datasets, including six 
types of lesions and one class without lesions. A synthetic oversampling approach generated 1,273 synthetic images 
for the underrepresented class. Synthetic image quality was evaluated using texture metrics. The experiment was 
conducted on a set of 7,172 images using data partitions of 70 %, 15 %, and 15 % for training, validation, and testing, 
respectively, with a Monte Carlo cross-validation to verify the consistency of the experimental results. The model 
achieved an accuracy of 89.78 %, a precision of 89.66 %, a sensitivity of 89.69 %, a specificity of 89.72 %, and an F1 
score of 89.67 % in the test set. The modified DenseNet-201 CNN model could be a valuable tool for diagnosing SB 
conditions and improving patient outcomes. 

KEYWORDS: convolutional neural network, deep learning, small bowel lesions, synthetic oversampling, video capsule 
endoscopy
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RESUMEN 
La endoscopia por videocápsula (VCE, por sus siglas en inglés) es un procedimiento no invasivo para diagnosticar 
lesiones del intestino delgado (SB). Durante los procedimientos de VCE, la cámara en miniatura captura miles de 
imágenes, lo que requiere mucho tiempo y esfuerzo por parte de los profesionales de la salud para examinar cada 
imagen en busca de anomalías. El objetivo de este estudio es desarrollar y evaluar un modelo modificado de red 
neuronal convolucional (CNN) DenseNet-201 para ayudar en la clasificación automática de las lesiones del intestino 
delgado en imágenes de VCE. Se creó un conjunto de datos representativo de 5,899 imágenes mediante la combinación 
de dos conjuntos de datos del estado del arte, incluyendo seis tipos de lesiones y una clase sin lesiones. Un método de 
sobremuestreo sintético generó 1,273 imágenes sintéticas para la clase infrarrepresentada. La calidad de las imágenes 
sintéticas se evaluó mediante métricas de textura. El experimento se llevó a cabo con un conjunto de 7,172 imágenes 
utilizando particiones de datos del 70 %, 15 %, y 15 % para entrenamiento, validación y prueba, respectivamente, 
con una validación cruzada Monte Carlo para verificar la coherencia de los resultados experimentales. El modelo 
alcanzó una exactitud del 89.78 %, una precisión del 89.66 %, una sensibilidad del 89.69 %, una especificidad del 
89.72 %, y una puntuación F1 del 89.67 % en el conjunto de pruebas. El modelo CNN DenseNet-201 modificado 
podría ser una valiosa herramienta para diagnosticar afecciones del SB y mejorar los resultados de los pacientes.

PALABRAS CLAVE: aprendizaje profundo, endoscopia con videocápsula, lesiones del intestino delgado, red neuronal 
convolucional, sobremuestreo sintético
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INTRODUCTION

The small bowel (SB) is an organ of the gastrointestinal (GI) tract that can be affected by various chronic diseases 
such as celiac disease, Crohn's disease (CD), occult gastrointestinal bleeding, small bowel neoplasms, and hereditary 
polyposis syndromes[1]. Traditional endoscopy and colonoscopy are commonly used diagnostic procedures to inves-
tigate the GI tract. Despite the relative effectiveness of these methods, in some cases, lesions in less accessible areas 
can sometimes go undetected. Studies have shown that in 77 % of these cases, the lesions are found in the SB, a 
region difficult to reach with traditional endoscopic techniques[2]. 

In 2001, the Food and Drug Administration (FDA) approved the use of an endoscopic videocapsule to diagnose 
small intestinal lesions[3]. Since then, videocapsule endoscopy (VCE) has become a first-line diagnostic procedure in 
the study of SB disorders[4]. VCE is an accurate clinical tool for diagnosing and monitoring various SB lesions[5]. It 
involves a small, swallowable capsule with a miniature camera that captures thousands of images as it passes 
through the digestive system, providing a solution to the limitations of traditional endoscopy methods. These 
images should be studied by a healthcare professional to identify any abnormalities or lesions that require immedi-
ate medical attention. The VCE procedure presents several challenges. First, the volume of images can be over-
whelming, as the capsule typically captures approximately 50,000 to 60,000 images during its journey. This requires 
significant time and effort from healthcare professionals to meticulously examine each image for possible abnormal-
ities. Second, the quality of images can be affected by factors such as rapid movement, inadequate lighting, or the 
presence of food residue, which can complicate the visibility of the mucosal surface. Additionally, interpreting these 
images requires expertise and experience, as subtle lesions can be easily missed[6]. To address these challenges, 
researchers and developers in medical imaging and healthcare technology have explored ways to automate and 
streamline the analysis process.

An effective alternative to traditional manual image analysis is the use of artificial intelligence (AI). These advanced 
technologies can quickly process large volumes of images, identify abnormalities with high precision, and reduce 
the workload of healthcare professionals. In addition, it can provide consistent results without the variability that 
can occur with human analysis, reducing human error and possible oversight. Deep learning (DL), a branch of AI, 
has shown effective results in medical image analysis, leading to the widespread adoption of convolutional neural 
network (CNN) algorithms due to their simplicity in handling medical images[7][8][9][10]. These algorithms achieve 
excellent performance in the detection of a variety of VCE pathologies, including ulcers, polyps, celiac disease, and 
bleeding. For example, Tariq Rahim et al.[11] and Andrea Caroppo et al.[12], developed methods to identify ulcers and 
SB bleeding by extracting features from color maps. Xinle Wang et al.[13], classified celiac disease using a combina-
tion of CNN algorithms. Younghak Shin et al.[14], Alba Nogueira Rodriguez et al.[15], and Meryem Souaidi et al.[16] have 
all worked on detecting and classifying polyps in endoscopic images. In addition, several works[17][18][19][20][21], focus 
on the detection and classification of different pathologies, such as intestinal bleeding, angioectasias, polyps, and 
inflammatory lesions.

These approaches use robust algorithms to analyze endoscopic images for tasks such as lesion detection, segmen-
tation, and classification, significantly improving the accuracy and efficiency of diagnosis. Despite these advances, 
challenges remain, particularly in the availability of large datasets that accurately represent the wide range of 
pathologies associated with SB diseases. Some efforts have been made to achieve this. Pia H. Smedsrud et al.[22], 
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labeled and medically verified 47,238 VCE images from fourteen classes of findings, including anatomical land-
marks, luminal, and pathological findings in the Kvasir-Capsule dataset. In addition, Vallée et al.[23], provided 
CrohnIPI, a labeled and medically verified dataset with 3,498 VCE images that contain various CD-associated 
lesions. Unfortunately, the number of CrohnIPI images is limited when automatic CD lesion classification is devel-
oped. 

As far as we know, no study has developed a multiclass classification model on the CrohnIPI dataset, because of the 
lack of images in certain classes. Handling multilabel models and training them to detect and identify SB lesions 
presents challenges and opportunities in medical image analysis. The complexity arises from different healthcare 
experts providing feedback, and there could be uncertainty or ambiguity when labeling certain lesions. 

The present study implements a modified DenseNet-201 CNN model to classify different SB lesions extracted from 
the Kvasir-Capsule and CrohnIPI datasets. This research aims to create a reliable model that accurately classifies 
various SB lesions on VCE images. By achieving high accuracy, this model could be integrated into a diagnostic sys-
tem that can assist endoscopists in accurately identifying various SB lesions.

The rest of the work is structured as follows: Section 2 discusses the methodology, detailing the techniques, tools, 
and resources used. Section 3 contains the results. Section 4 discusses the results. Section 5 presents the conclu-
sions. Section 6 describes future work, and finally, section 7 reports acknowledgments.

MATERIALS AND METHODS

The methodology (Figure 1) consists of three stages. Data preparation is the first stage, which includes a brief 
description of the database elements, the approach to working with the data, the preprocessing steps, and the 
applied data augmentation techniques. The second stage involves training and validation of the DenseNet-201 
architecture. This stage contains different strategies for classifying SB-associated lesions, and the configuration of 
hyperparameters, such as optimizer, learning rate, batch size, and number of epochs, along with the tools used to 
implement the CNN model. Finally, in the last stage, the performance of the model is evaluated using various met-
rics.

FIGURE 1. Diagram of the methodology.
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Data preparation
The data preparation stage was divided into four phases (Figure 2). The first phase reviews the databases from 

which the images were obtained. The second phase addresses the techniques used to split the data. The third phase 
implements techniques to manage data imbalance. In the fourth and final phase, various transformation tech-
niques are used to enhance the generalization of the architecture.

FIGURE 2. Diagram of data preparation.

Data collection and description
The Kvasir-Capsule database contains 47,238 labeled images extracted from videos collected from clinical exam-

inations conducted in the Department of Medicine, Bærum Hospital, Vestre Viken Hospital Trust in Norway, using 
the Olympus EC-S10 endocapsule with a resolution of 336 × 336 pixels. It has two main categories with their corre-
sponding classes according to the Minimal Standard Terminology of the World Endoscopy Association[22].

 The category of anatomy contains anatomical landmarks characterizing the GI tract. The category of luminal find-
ings includes the content of the bowel lumen, the aspect of the mucosa, and pathological findings. The Crohn IPI 
database contains images captured via PillCam3 from 63 patients from Nantes University Hospital[23]. The resolution 
of these images is 320 × 320 pixels. In total, 3,484 images were annotated, each image was reviewed independently 
of the previous and following images without any idea of the patient undergoing the examination. The integration 
of these two datasets allows for the exploitation of their complementary strengths, thereby enhancing the accuracy 
and reliability of the classification model. Figure 3 shows an example of each database class used: Angiectasia, 
blood, erosion, erythema, lymphangiectasia, ulceration, and nonpathological.
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FIGURE 3. Database classes

TABLE  1. Class distribution.

Revista Mexicana de Ingeniería Biomédica 

 

CCllaassss  NNuummbbeerr  ooff  iimmaaggeess  
Angiectasia 866 

Blood 446 
Erosion 506 

Erythema 284 
Lymphangiectasia 592 
Nonpathological 2124 

Ulceration 1081 
 Total  5899 

 

The two databases were merged to create a new database that exclusively consists of SB lesions with 5,899 images. 
The selection process involved choosing the most representative classes with SB lesions to increase the variety of 
lesions. Table 1 presents the number of images per database class.

Data splitting
The dataset, consisting of 5,899 images available, was divided into training, validation, and test sets according to 

the distribution shown in Table 2. Each image was randomly assigned to one of the three sets, ensuring consistency 
of images across sets.
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(1)

The partition followed a 70:15:15 ratio for the training, validation, and test sets. Furthermore, repeated random 
subsampling (Monte Carlo cross-validation) was used for validation. This process was repeated three times with 
each iteration involving a different random split.

Data generation
Before handling data imbalance, a resizing method is implemented to ensure that the synthetic samples are gener-

ated in the resized feature space. The bilinear interpolation method[24] is used to resize the original images to 224 × 
224 × 3 pixels, a size congruent with the DenseNet-201 model[25]. To address the class imbalance, the Adaptive 
Synthetic (ADASYN) sampling approach[26] was applied. For each minority class data example xi generate si synthetic 
data examples by randomly selecting one minority data example xzi,  from the K nearest neighbors for data xi via 
Equation 1.

Revista Mexicana de Ingeniería Biomédica 

 

SSeett  PPeerrcceennttaaggee  ooff  tthhee  iimmaaggeess  ((%%))  TToottaall  nnuummbbeerr  ooff  iimmaaggeess  
Training 70 4129 

Validation 15 885 
Testing 15 885 

  Total 5899 
 

TABLE  2. Data splitting details.

𝑠𝑠𝑖𝑖 = 𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑧𝑧𝑧𝑧 − 𝑥𝑥𝑖𝑖) × 𝜆𝜆 

where (xzi-xi ) is the difference vector in n-dimensional spaces, and λ is a random number: λ ϵ[0,1]. The result of 
applying ADASYN using a minority sampling strategy generated a new training dataset with 5,402 images. The aug-
mented dataset result of the implemented ADASYN technique is shown in Table 3.Revista Mexicana de Ingeniería Biomédica 

 

CCllaassss  NNuummbbeerr  ooff  iimmaaggeess  
Angiectasia (class 0) 568 

Blood (class 1) 316 
Erosion (class 2) 357 

Erythema (class 3) 1480 
Lymphangiectasia (class 4) 412 

Nonpathological (class 5) 1501 
Ulceration (class 6) 768 

 Total 5402 
 

TABLE  3. Class distributions in the training set after the ADASYN oversampling method.

With this method, 1,273 synthetic images were created for erythema, the class with the lowest representation of 
the dataset. Figure 4 shows three examples of synthetic images generated from the minority class.
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FIGURE 4. Synthetic images from the minority class using the ADASYN method.

Data transformation
In addition, various data augmentation techniques were applied. The list below shows the various augmentation 

techniques, and their parameters used in this work.
• Random rotation of 15 degrees.
• Vertical and horizontal flipping with a probability of 0.5.

These techniques help to improve generalization, robustness to orientation variations, and the ability of the model 
to handle data in real-world conditions, which is key in VCE image classification. Finally, the dataset has a total of 
7,172 images, of which 5,402 are for training, and 885 for validation and testing purposes, respectively. 

Training and validation of the model
A CNN model is composed of several fundamental layers, each with a specific function in image processing. The 

basic structure is illustrated in Figure 5. 

FIGURE 5. Architecture of a convolutional neural network [27]. 

The convolution layer performs a dot product between the input x and the weights Wk and adds a bias bk. Next, a 
nonlinearity or activation function is applied to the output of the convolution layer, resulting in k feature maps hk 

as shown in Equation 2.
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The pooling layer downsamples each feature map in the subsampling layers, reducing network parameters, accel-
erating training, and preventing overfitting. The mathematical expression of using max pooling can be observed in 
Equation 3.

Finally, in the classification stage, a loss function is used in the output layer to calculate the prediction error over 
the training samples. This error reveals the difference between the actual and expected outputs. The Softmax func-
tion estimates the probability of belonging to a class, and its output is the probability of p ϵ {0,1} as shown in 
Equation 4. 

where eai represents the unnormalized output of the previous layer, while N represents the number of neurons in 
the output layer. Finally, the mathematical representation of the cross-entropy loss function is Equation 5.

ℎ𝑘𝑘  =  𝑓𝑓(𝑊𝑊𝑘𝑘 ⋅  𝑥𝑥 +  𝑏𝑏𝑘𝑘) (2)

(3)

(4)

(5)

𝑂𝑂𝑘𝑘  =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊𝑘𝑘 ⋅  𝑥𝑥 +  𝑏𝑏𝑘𝑘) 

𝑝𝑝𝑖𝑖 =  𝑒𝑒𝑎𝑎𝑎𝑎

∑ 𝑒𝑒𝑘𝑘
𝑎𝑎𝑁𝑁

𝑘𝑘=1
 

𝐻𝐻(𝑝𝑝, 𝑦𝑦) =  − ∑ 𝑦𝑦𝑖𝑖  𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) 

where yi is the true label for class i. Cross-entropy is a key metric in DL to measure how well a model classifies sam-
ples. It is commonly used in neural networks with Softmax in the output.

DenseNet-201 model
This architecture is 201 layers deep and works with twenty million parameters. Fewer parameters are needed than 

conventional CNNs because they do not need nonessential feature maps[28]. To preserve the feedforward nature, 
each layer obtains additional inputs from all preceding layers and passes its feature maps to all subsequent layers 
[25]. This is called dense connectivity, where direct connections from any layer to all subsequent layers are produced. 
Figure 6 schematically illustrates the layout of the resulting dense connectivity. 

FIGURE 6. Deep DenseNet with three dense blocks.
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Hyperparameter configuration
The following parameters were used for training the network: 200 epochs; batch size 32; Stochastic Gradient 

Descent with Momentum (SGDM) optimization with a learning rate of 0.001. The model has been pre-trained on 
ImageNet[29]. In addition, the DenseNet architecture was modified by appending additional layers to its classifier 
module. Specifically, inserting a fully connected layer with 1024 neurons followed by a LeakyReLu activation func-
tion with a negative slope of 0.001 to introduce nonlinearity. Dropout regularization with 0.2 dropout probability 
was applied to prevent overfitting. Finally, another fully connected layer was added to produce the predictions 
corresponding to the number of classes in the classification task. Figure 7 shows the custom architecture.

FIGURE 7. Custom DenseNet-201 architecture.

Figure 7 illustrates how the spatial dimensions of each layer decrease while the number of feature maps increases. 
The total number of feature maps Fl  in each block at the corresponding lth output layer is calculated with Equation 
6.

𝐹𝐹𝑙𝑙  =  𝐹𝐹0  +  𝐿𝐿𝑙𝑙 ×  𝑘𝑘 (6)

where F0 is the initial number of feature maps, Ll is the number of layers in each block, and k is the growth rate. This 
equation highlights how the network becomes deeper by adding new feature maps at each layer, contributing to the 
total Fl. The growth rate k=32 is constant, but the total number of feature maps increases as layers are added within 
each dense block and decreases by half in each transition layer.

Experimental setup
The model was implemented in Python version 3.11.2, utilizing PyTorch version 2.2.1 with CUDA support and 

torchvision version 0.17.1 for deep learning and computer vision tasks. An AMD Ryzen 9 processor was employed, 
and a single GeForce RTX 3060 served as the graphics processing unit.

Evaluation of model performance
To comprehensively evaluate the performance of the model on unseen data, a range of metrics was used, including 

micro averaging, macro averaging, and weighted averaging. In addition, the confusion matrix was analyzed to 
assess the accuracy of the model by determining the proportion of correctly classified instances for each class. 
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Finally, the area under the receiver operating characteristic (ROC) curve was calculated as a key metric to evaluate 
the overall performance of the model.

RESULTS AND DISCUSSION

The model was trained using the augmented training set. By plotting the loss curve over 200 epochs, the training 
and validation progress of the model was monitored. Figure 8 shows the evolution of the loss function in each epoch 
of the training process.

FIGURE 8. Evolution of the loss curve in the training and validation sets for each training epoch.

After epoch 100, the validation loss exhibited minor fluctuations, and finally, at epoch 125, the minimum value of 
0.3759 was reached. The results obtained on test set images are presented in Table 4. The micro, macro, and 
weighted averages were calculated. Revista Mexicana de Ingeniería Biomédica 

 

MMeettrriicc  MMiiccrroo  aavveerraaggee  MMaaccrroo  aavveerraaggee  WWeeiigghhtteedd  aavveerraaggee  
Accuracy 0.9016 0.9016 0.8978 
Precision 0.9016 0.8907 0.8966 

Recall 0.9016 0.8695 0.8969 
Specificity 0.9016 0.8788 0.8972 

F1-score 0.9016 0.8889 0.8967 
 

TABLE  4. Performance metric results.

The micro average results for all the metrics, including accuracy, precision, recall, specificity, and F1-score, were 
all 0.9016. For the macro average, the accuracy remained at 0.9016. However, the precision decreased slightly to 
0.8907, the recall to 0.8695, specificity to 0.8788, and F1-score to 0.8889. The weighted average results indicate an 
accuracy of 0.8978, precision of 0.8966, recall of 0.8969, specificity of 0.8972, and F1-score of 0.8967. The model 
was evaluated regarding the area under the curve (AUC), accuracy, sensitivity, and specificity using the test set with 
a Monte Carlo cross-validation with three iterations. In addition, measures of central tendency are used, such as 
mean and standard deviation. Table 5 shows the results of this trial.

REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | VOL. 46 | SPECIAL ISSUE 2025
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The mean values of AUC, accuracy, sensitivity, and specificity were 0.96, 0.8978, 0.8969, and 0.8972, respectively. 
The standard deviation values for AUC, accuracy, sensitivity, and specificity were 0.0082, 0.0038, 0.0037, and 
0.0032, respectively. A confusion matrix was constructed to analyze the performance of the model in more detail. 
Figure 9 illustrates the confusion matrix that resulted before and after applying the ADASYN method.

 

 

Iteration AUC Accuracy Sensitivity Specificity 
1 0.95 0.8926 0.8925 0.8926 
2 0.96 0.8994 0.8966 0.8994 
3 0.97 0.9016 0.9016 0.8996 

Mean 0.96 0.8978 0.8969 0.8972 
Standard deviation 0.0082 0.0038 0.0037 0.0032 

 

TABLE  5. Monte Carlo cross-validation results.

FIGURE 9. DenseNet-201 model confusion matrix.

Figure 9 shows the percentage of correct and incorrect predictions for each model class before and after applying 
the ADASYN method. Before applying the ADASYN method, for class 0 (angiectasia), the model achieved moderate 
accuracy, correctly classifying 86.49 % of true class 0 instances. Misclassifications were considerable, with 11.49 % 
predicted as class 2. Class 1 (blood) showed perfect performance with 100 % accuracy. Class 2 (erosion) had 92.21 
% accuracy, with minimal misclassifications in classes 0 (3.90 %) and 3 (3.90 %). For class 3 (erythema), the accu-
racy decreased to 9.52 %, with notable misclassifications into classes 0 (7.14 %), 2 (21.43 %), 5 (11.90 %), and 6 
(50.00 %). Class 4 (lymphangiectasia) displayed a high accuracy of 92.50 %, with errors in class 0 (5.00 %) and class 
2 (2.50 %). Class 5 (nonpathological) had a correct classification rate of 93.27 %, with some instances misclassified 
in class 6 (6.73 %). For class 6 (ulceration), the accuracy was 86.05 %, with errors in class 5 (13.95 %). After applying 
the ADASYN method, for class 0, the model achieved a high accuracy with 95.95 % of true class 0 instances. 
Misclassifications were minimal, with 3.38 % predicted as class 2. Class 1 also showed strong performance, with 
100 % accuracy. In class 2, 96.10 % of the instances were correctly classified, but there were misclassifications in 
classes 1, 3, and 4, each at 1.30 %. Class 3 had a lower correct classification rate of 45.24 %, with significant misclas-
sifications into classes 2 (4.76 %), 5 (9.52 %), and 6 (44.48 %). Class 4 contained 96.25 % accuracy, with small errors 
in class 1 (3.75 %). Class 5 also had a high accuracy of 92.95 %, with some misclassifications in class 6 (6.41 %). For 
class 6, the correct classification rate was 86.63 %, with errors in classes 3 (2.33 %) and 5 (11.05 %). In addition, the 
area under the ROC curve (Figure 10) was measured.
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FIGURE 10. Multiclass ROC curve.

Class 0 had an AUC of 0.96. Class 1 had an AUC of 0.98. Class 2 had an AUC of 0.92.  Class 3 had an AUC of 0.87. 
Class 4 had an AUC of 0.94. Class 5 had an AUC of 0.97. Class 6 with an AUC of 0.90. The micro average ROC curve 
had an AUC of 0.95. The quality of synthetic images was evaluated by comparing texture features such as correla-
tion, contrast, and homogeneity between images. Table 6 compares an original image of erythema with a synthetic 
image.

 

 

Metric Correlation Contrast Homogeneity 
Erythema original image 0.9559 117.9898 0.3368 

Erythema synthetic image 0.9588 108.6636 0.3680 
 

TABLE  6. Texture feature comparison results.

The correlation values for the original and synthetic images were 0.9559 and 0.9588, respectively. The contrast of 
the original images was 117.9898, while the synthetic images exhibited a contrast of 108.6636. The homogeneity 
for the original image was 0.3368, whereas the synthetic images demonstrated a higher homogeneity of 0.3680. In 
addition, the color dispersion was analyzed through its graph. Figure 11 shows the color distribution of the original 
erythema and the synthetic image.

FIGURE 11. Color scatter plot between erythema images.

REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | VOL. 46 | SPECIAL ISSUE 2025
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The synthetic image, while similar, showed a slightly wider spread, particularly in the higher-intensity regions.

This work proposed a modified DenseNet-201 for the classification of VCE images to identify various types of SB 
lesions in a custom dataset. The main advantage of the proposed work and other reference works mentioned above 
is the lesion-level classification. This is a more accurate way to diagnose VCE lesions. Even with a limited number of 
images, the model can classify different lesions with 89.78 % accuracy. By merging the two databases mentioned in 
Section 2, a more diverse dataset featuring various lesions that could be encountered in a VCE examination was 
developed. An ADASYN oversampling method was implemented to address the lack of images in the minority class. 
By selectively applying the minority sampling strategy, we focused only on generating synthetic samples for the 
erythema class, rather than creating synthetic samples for all classes to maintain dataset balance. This approach not 
only conserves resources but also preserves the natural distribution of the original database, thereby enhancing the 
validity of our results. This improved the performance of the model in classifying the minority class by 36 %. Figure 
9 shows how the ADASYN method helps balance accuracy between classes, leading to more consistent performances 
in different types of lesions. Since occult bleeding is the main indication for VCE, the model demonstrates excep-
tional accuracy in classifying this lesion, achieving 100 % correct predictions. This high accuracy highlights the 
potential utility of the model in clinical settings, particularly in the detection and diagnosis of occult bleeding. 
However, erythema and ulceration are the two classes with fewer than 90 % correctly classified instances. The 
model has more difficulty distinguishing these classes than others, possibly due to the subtle and often overlapping 
characteristics of erythema and ulcerations in VCE images. Erythema usually serves as an early indicator of inflam-
mation. As the inflammatory response progresses, the affected mucosal areas can develop more severe lesions, 
ultimately leading to ulceration. An image-to-image comparison was conducted to assess the correlation and verify 
that the synthetic images resembled the original images. The analysis revealed that both the original and synthetic 
erythema images exhibited high correlation values. This finding indicates that synthetic images maintain a strong 
linear relationship with the original images in terms of pixel intensity patterns. The lower contrast in the synthetic 
image indicates that some of the fine details or variations in intensity might have been smoothed out or lost during 
the synthetic image generation process. The increase in homogeneity for the synthetic image implies that it may 
have less variation and smoother transitions between different areas, which could be due to the generation process 
making the image appear more blended or less textured. The synthetic erythema image closely resembles the orig-
inal in terms of overall structure but may have slightly less contrast, leading to a smoother appearance with fewer 
distinct features. According to Table 6, the correlation is close to 1 in both images, indicating a high similarity 
between an original image and a synthetic image. Despite this, the ADASYN method shows several shortcomings: 
some images show color inconsistencies and do not perfectly match the feature distributions of real images. 
Nevertheless, the synthetic image has captured the general color distribution of the original image. To compare the 
performance of our model, some architectures employed in other VCE-related research were tested under the same 
conditions as mentioned in this study. Marin-Santos et al.[4] studied 15,792 images related to CD lesions and devel-
oped an architecture with 6 blocks, consisting of convolution, batch normalization, and ReLu layers, which use 3 × 
3 kernels. Klang et al.[5] implemented an EfficientNet-B5 to classify intestinal strictures as normal or ulcerated 
mucosa on 27,892 VCE images. Vallée, Rémi et al.[30], implemented a ResNet-34 to classify CD lesions on 3,984 VCE 
images. These architectures were subjected to the same conditions used in the present study, as shown in Table 4, 
except EfficientNet-B5, where a batch size of four was used. They were trained using the ADASYN augmented data-
set and tested on the test set. The dimensions of the images were modified according to the architecture specifica-
tions. For the custom CNN, the image was resized to 320 × 320 pixels. With EfficientNet-B5, it was adjusted to 456 
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× 456 pixels. For ResNet-34, the size was set to 256 × 256 pixels. Table 7 shows the results of the trial.  

 

Model Accuracy Precision Recall F1-score 
Marin-Santos et al. [4] 0.7898 0.7841 0.7898 0.7808 

Klang et al. [5] 0.8734 0.8829 0.8734 0.8634 
Vallée, Rémi et al. [30] 0.8870 0.8863 0.8870 0.8837 

Modified DenseNet-201 (This work) 0.8978 0.8966 0.8969 0.8967 
 

 

TABLE  7. Performance comparison between state-of-the-art CNNs.

The CNN with the lowest performance is the custom CNN by[4], whose accuracy is less than 80 %. Despite this, its 
training time was 30 minutes, the lowest among the different architectures. This suggests that more epochs are 
needed to extract relevant features and enhance accuracy. However, for this experiment, only 200 epochs were used 
for comparison purposes. EfficientNet-B5[5], which took a total of 1808 minutes to train, achieved 87.34 % accuracy. 
This architecture employs depthwise separable convolutions and integrates squeeze and excitation (SE) blocks, 
which enhance feature recalibration by learning channel-wise dependencies. It also uses the swish activation func-
tion, which has been shown to improve performance compared to ReLu. These characteristics make EfficientNet-B5 
competitive among CNNs. However, despite its strong performance in general image classification tasks, the archi-
tecture shows some deficiencies when classifying images of the small intestine. These challenges may be due to the 
intricate and variable nature of small intestine imaging, which requires specialized diligence and feature extraction 
that EfficientNet-B5 may not fully capture. ResNet-34[30], which took 299 minutes to train, achieved the second-best 
overall performance with 88.7 % accuracy. This highlights the efficiency of ResNet architecture in processing infor-
mation. The ResNet residual blocks allow for deeper networks by mitigating the vanishing gradient problem, 
enabling robust learning and improved accuracy without excessive computational cost. The proposed model in this 
study (DenseNet-201) achieves the best overall performance with an accuracy of 89.78 %. The training time was 
2022 minutes, making it the longest among the architectures evaluated. If this model is integrated into a clinical 
tool, video processing time could be a limitation. This extensive training time raises potential concerns regarding 
the feasibility of integrating this model into a clinical tool, particularly for video processing. However, the present 
work does not implement the model for real-time video analysis. Consequently, the time needed for the model to 
analyze complete video sequences for lesions was not measured. Although the main contribution of this work is the 
lesion-level classification, which provides greater precision and detail in the analysis and diagnosis of images. This 
methodology allows the identification and categorization of specific lesions within medical images, providing valu-
able information for the treatment and follow-up of diseases. Therefore, the CNN-based multiclassification models 
are promising for being potentially more valuable than conventional physician SB-VCE readings. However, before 
being fully introduced in clinical practice, there are still challenges: most studies are conducted under experimental 
conditions and have a retrospective single-center study design. Additionally, the incorporation of AI into clinical 
practice and trials requires a significant leap in terms of standardization, quality assessment, reproducibility, and 
workflow integration to ensure its effective and reliable implementation. So far, CNN-based systems aim to enhance 
diagnostics by serving as a support tool for specialists, assisting in the identification and analysis of medical images 
rather than replacing clinical judgment. In summary, an accuracy of 89.78 % was achieved in the classification of 
different SB lesions with the model implemented in this work. A more diverse dataset of 7,172 images was gener-
ated via a minority sampling strategy. The experiment was repeated three times to verify the consistency of the 
results. In each iteration, the different sets were selected in a random and balanced manner across the classes. In 
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addition, the performance of the model was compared with another VCE-related research. The results obtained 
confirm the ability of the network to distinguish between SB-related lesions. This work could serve as a tool in the 
diagnosis of SB-related lesions, reducing human error and improving the detection of lesions, allowing faster patient 
diagnoses and treatment plans.

CONCLUSIONS

This study combined the Kvasir-Capsule and CrohnIPI datasets to create a more representative dataset with 5,899 
images. The ADASYN technique to resample the minority class erythema in the training dataset. As a result, the 
resampled dataset expanded to 7,172 images, while the validation and testing sets remained at 885 images each. 
Our findings show that the ADASYN technique improves the accuracy of the custom DenseNet-201 model imple-
mented to classify different SB lesions. The presented methodology demonstrated a high overall accuracy of 89.78 
%. However, in this study, some limitations were identified. The model struggles to distinguish between certain 
classes, primarily because of the lack of images. Although the resampling technique improves performance, it is not 
sufficient for the DenseNet-201 model to achieve over 90 % accuracy in classifying the erythema class.
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