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ABSTRACT 
The accelerated aging process is incorporated into the design and development of intravascular catheters to assess 
their reliability assuring that this medical device is safe and effective for the intended use during their shelf life. The 
accelerated aging process is based on a common approach that assumes that the rate of aging increases by a factor of 
2^(∆T/10), where ∆T is the temperature increment. However, with the life data obtained from this empirical method 
is difficult to do inferences about reliability. This paper presents an accelerated destructive degradation test using 
thermal stress to obtain degradation data directly relates reliability to critical performance characteristic, which is 
the tensile strength in the intravascular catheter tip considered as a critical concern in patients’ safety. The degrada-
tion data model is given by a stochastic Wiener process with the drift parameter being represented as Arrhenius func-
tion. The parameters of the Wiener process and Arrhenius function are estimated using maximum likelihood; these 
parameters are used to estimate the first-passage time (time to failure) distribution when the intravascular catheters 
degradation path reaches a tensile strength critical value in each thermal stress level. Based on this, a complete prod-
uct reliability assessment is performed and presented.
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RESUMEN 
El proceso de envejecimiento acelerado es incorporado en el diseño y desarrollo de catéteres intravasculares para 
evaluar su confiabilidad y asegurar que el dispositivo medico es seguro y efectivo para su uso durante su vida de es-
tante. Este proceso está basado en un enfoque que asume que la tasa de envejecimiento se incrementa por un factor 
de 2^(∆T/10), en donde ∆T es el incremento de temperatura. Sin embargo, con los datos de vida obtenidos de este 
método empírico resulta complicado realizar inferencias sobre la confiabilidad del dispositivo. Este articulo presenta 
una prueba de degradación acelerada destructiva que considera un estrés termal para obtener datos de degradación 
que se relaciona directamente la confiabilidad con la resistencia tensil de la punta de un catéter intravascular y que 
es considerada como una característica critica para la seguridad de los pacientes. El modelo de degradación esta dado 
por un proceso estocástico Wiener, con el parámetro de deriva representado la relación de Arrhenius. Los parámetros 
del proceso Wiener y la relación de Arrhenius son estimados mediante máxima verosimilitud; estos parámetros son 
usados para estimar la distribución de primer paso, la cual se caracteriza cuando la resistencia de un catéter alcanza 
el nivel crítico de resistencia en cada nivel de estrés. Considerando esto, se lleva a cabo y se presenta una evaluación 
de confiabilidad completa del producto.

PALABRAS CLAVE: Envejecimiento acelerado, degradación, Tiempo de primer paso, Catéter intravascular, Proceso Wiener
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INTRODUCTION
Elevated temperature is frequently used as a factor to 

stimulate the aging process, also known as “acceler-
ated aging”. This process is applied to different poly-
mers that are used in the fabrication of medical devices 
and other materials applications from nuclear, space, 
and geomembrane industries [1] [2].

The objective of the accelerated aging process in the 
medical device industry is reducing the amount of 
time required for performance qualification of medi-
cal devices including their shelf life. The concept of 
shelf life must be incorporated into the product reli-
ability during the process of medical device develop-
ment for commercial distribution [1] [3].

The introduction of medical devices in the market 
requires to assure that they can be stored for an 
extended period in accordance with their labeling, 
without any decrease in the performance that may 
affect safety and efficacy when the device is used [3] [4]. 
The accelerated aging process provides experimental 
data in support of the performance and shelf life until 
real-time aged samples become available [4].

The accelerated aging techniques used in the medical 
device industry are well documented by Standards 
Development Organizations (SDO), such as 
Advancement of Medical Instrumentation (AAMI) in 
the Technical Information Report TIR17, entitled 
“Radiation Steri-lization Material Qualification”, and 
American Society for Testing and Materials (ASTM) in 
their standard F1980-7. Both SDO provide a method 
based on van’t Hoff’s observation and Arrhenius reac-
tion rate function. This function, known as accelerated 
aging factor (AAF), states that a 10°C increase or 
decrease in temperature, the rate of chemical reac-
tions increases by a factor of two. It can be expressed 
as in Equation (1).

Where, ∆T= T-Tref. Tref is a reference temperature that 
determines the effect of aging, and T is an accelerated 
temperature used to stimulate the effect of aging. This 
is also known as the Q10= 2 rule [1] [5]. This mathemati-
cal expression is a predictive equation from empirical 
observation that is considered into the approaches to 
accelerated aging methods. There are many approaches 
to accelerated aging that have been documented and 
summarized in the literature, from simple holding the 
materials at conditions as close as possible to the use 
conditions to minimize the aging factor, up to com-
plex chemical and analytical methods [2]. Different 
studies of elastomer aging and their application to 
biomaterials have been reviewed by Hukins et al. [1]. 
Additionally, accelerated aging testing using the 
Arrhenius model with elevated temperatures has been 
studied to determine the failure modes of LEDs for 
medical applications [6]. 

Even though it has been demonstrated that the 
empirical method of Q10= 2 rule outlined in AMMI 
TIR17 and ASTM F1980-7 is reasonable and responsi-
ble, it is only valid for T ≤ 60 °C [1] [2]. In this condition 
it is difficult to obtain life data and have inferences 
about medical device reliability; therefore, critical 
concern in patients’ safety is not considered. Reliability 
analysis using accelerated degradation tests (ADTs) 
can often acquire a better accuracy of life estimation 
in comparison to accelerated life tests (ALTs) e.g., 
accelerated aging. Since, using accelerated degrada-
tion data directly relates reliability to a physical char-
acteristic also known as critical performance charac-
teristic [7] [8]. Furthermore, an accelerated degrada-
tion-based model characterizes the degradation pro-
cess as a function of time. A typical degradation 
model is given by a stochastic process [9]. Degradation 
models based on stochastic processes have been par-
ticularly studied in the last years [10]. The different 
stochastic processes including the Wiener Process are 
described by Lim and Yum [9], Rodriguez-Picón et al. 
[10] and Rodríguez-Picón et al. [11].(1)𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑄𝑄!"∆$/!" 
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The Wiener process is a non-monotone stochastic 
process, which suggests that negative increments may 
be present in the process. This process has been 
widely used in the reliability analysis of different 
applications [12]. For example, Pan et al. [7] validated a 
life estimation method using degradation dataset of 
the LED and the Wiener degradation process. Li et al. 
[13] used a Wiener process model to predict the remain-
ing useful life (RUL) in two study cases, the first in 
gyroscopes used as critical component of the inertial 
navigation system (INS) and the second in the lithi-
um-ion batteries, which are used as the energy solu-
tions in many fields. Lyu et al. [14] applied the Wiener 
process to model the degradation-based in burn-in 
method to maximizing the mean lifetime to failure 
(MTTF) of a certain product.

On the other hand, in certain applications of ADTs, 
the measurements of the degradation level in the crit-
ical performance characteristic are destructive, so that 
only one measurement can be obtained from each test 
unit; this approach is based on accelerated destructive 
degradation tests (ADDT) [15] and some examples of the 
ADDTs applications have described below. Escobar et 
al. [15] applied an ADDT for assessing reliability using 
the strength of an adhesive bond. The considered test 
was destructive because the strength can only be mea-
sured once for each unit. Chih-Chun Tsai et al. [16] used 
an ADDT to assess the long-term reliability of a poly-
mer material that was subjected to an alkaline envi-
ronment at high temperatures; the critical perfor-
mance characteristic was the tensile strength so that 
was destructive. Some studies have been conducted 
on ADDT planning; as described in [17] [18].

Driven by the above-mentioned works, the objective 
of this paper is to develop a ADDT model based on the 
Wiener process as an alternative approach to the accel-
erated aging method outlined in AAMI TIR17 and 
ASTM F 1980-7 that are used in the design and devel-
opment of medical devices specifically intravascular 

catheters to provide evidence for claimed shelf life as 
part of the product reliability. An intravascular cathe-
ter is a medical device that is described in Food and 
Drug Administration (FDA) regulation, 21 Code of 
Federal Regulations (CFR) part 880.5200 as a slender 
tube that is inserted into the patient’s vascular system 
for short term use to sample blood, monitor blood 
pressure, or administer fluids intravenously [19]. For 
the ADDT performed in this paper, the critical perfor-
mance characteristic selected is the tensile strength in 
the catheter tip (tip pull test). This test assesses the 
bond strength of polymeric thermal fusion between 
the distal tip and the catheter shaft to demonstrate 
that bond can withstand tensile forces greater than 
those that may be experienced during clinical use. The 
tensile force that separates the distal tip from the cath-
eter shaft is a critical concern patients’ safety because 
a failure of bonds in the distal tip could lead to vessel 
damage, embolic risk (obstruction of blood flow) due 
to the device remnants within the vasculature, and 
their death, which may also potentially occur [20] [21] [22]. 
There are numerous adverse events and recalls 
reported on the medical device databases from FDA 
related with the distal tip separation. This information 
can be found in [23] [24].

The contents of this paper are organized as follows: 
Section 2 describes the devices under test (DUT), and 
the ADDT design whit the stress condition that is 
applied to the DUT over time. Section 3 explains the 
theory and modeling principle of the degradation 
model in terms of stress level, and the parameter esti-
mation method. The theory of times to failure and the 
accelerated factor calculation are explained as well. 
Section 4 provides the results of the degradation 
model, and their estimated parameters which are 
obtained from the ADDT described in section 2. The 
degradation model parameters are used to calculate 
the estimated time to failure in the DUT, and an esti-
mated acceleration factor. We concluded this paper in 
Section 5.
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MATERIALS AND METHODS
In this section, a description of the DUT is presented. 

A description of the experimental conditions and 
obtained results is also presented.

Test Samples
The DUT are intravascular catheters over the wire 

(OTW) single-lumen with atraumatic distal tip 
designed for use in the peripheral vascular system. 
The Intravascular catheter consists of a lubricious 
inner liner, a stainless-steel braid over the liner, and a 
shaft (outer layer) that involve different polymers. 
The shaft is bon-ded with a polymeric distal tip 
trough out a thermal fusion method. Additionally, a 
radiopaque marker band is positioned on the distal 

FIGURE 1. Illustration of the DUT.

tip, and a hub is attached to the proximal end of the 
intravascular catheter. The distal tip is made from a 
polymer with low stiffness in comparison to the cath-
eter shaft polymers. For the distal tip, low stiffness is 
required to passage through curved pathways in the 
vasculature in an easy and non-traumatic manner 
while the catheter shaft requires greater stiffness to 
achieve precise transmission of the movement carry 
on by the physician’s hand up to the tip of the device. 
This mechanical property is required to successfully 
navigate the vascular system [25]. The DUT have an 
outer diameter of 6 French size or 1.92 mm, an inner 
diameter of 1.58 mm, and they are available in a vari-
ety of lengths. An illustration of the DUT is presented 
in Figure 1.

 Experimental Setup and Test Conditions 
The DUT claim a shelf life of two years when they are 

stored in temperature-room conditions (from 20 °C up 
to 25 °C). Thus, the ADDT was based on thermal stress 
to obtain the tensile strength degradation data. The 
thermal stress was conducted in calibrated ovens with 
a constant aging temperature of 50 °C, 60 °C, 70 °C and 
80 °C. The temperatures were defined with incre-
ments of 10 °C to adhere to SDOs, such as the test 
schemes defined in ASTM F 1980-7 and AAMI TIR17. 
The first accelerated temperature was defined as 50 °C 
to increase the aging rate, which would be less if the 

initial temperature was set at a lower value. 
Furthermore, maximum test temperature is suggested 
to be 60 °C [2] if the aging test is based on the van’t 
Hoff’s observation, as non-linear effects may be 
expected in the polymeric systems. Based on this, it is 
considered to extend the temperature beyond 60 °C to 
two more increments as 70 °C and 80 °C, in the aims of 
explore this non-linearity of the temperature effect. It 
should be noted that test temperatures below 60 °C are 
recommended given that the van’t Hoff’s observation 
gives an empirical estimation that tends to be linear 
across the temperature ratios in (1).
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 There were six tensile strength measurements 
obtained from the DUTs from 15 days up to 75 days (15, 
30, …, 75) at the four different levels of temperature. In 
addition, the experiment included 6 units that were 
not subjected to the thermal stress at the beginning of 
the experiment. In total, 144 units were subjected to 
the thermal stress conditions and tested according to 
the time schedule. Figure 2 represents a schematic of 
the experimental set-up.

FIGURE 2. Accelerated Degradation Destructive Test 
Experimental Set-up. Five groups of six catheters each 

(1) per temperature were placed in the oven (2). Every 15 
days, a group was withdrawn (3 and 4) and tested.

The tensile strength testing was performed according 
to the methodology described on Annex B of the ISO 
10555-1:2013. This standard specifies the general 
requirements for intravascular catheters. Annex B 
describes the method for determining peak tensile 
force. Table 1 was used to select the test conditions; for 
a gauge length of the test piece of 10 mm, a test speed 
of 200 mm/min is obligatory. Using a calibrated 
Chatillon force measurement system, the tensile force 
was applied to the catheter shaft and distal tip bond 
until the test piece separates into two or more pieces. 
The peak tensile force in N reached by the tensile test-
ing of the DUT was recorded. Prior to performing the 
tensile strength test, the DUT were conditioned in an 
aqueous medium at 37 °C ± 2 °C for a period of 2 hours, 
which represents the expected clinical conditions for 

the devices. Immediately after conditioning the ten-
sile strength test were performed [26]. Figure 3 rep-
resents the test conditions. 

TABLE 1. Accelerated degradation test plan.Tabla 1 
 

Temperature 
(°C) 

Days  

0 15 30 45 60 75 

-- 24 0 0 0 0 0 24 

50 0 6 6 6 6 6 30 

60 0 6 6 6 6 6 30 

70 0 6 6 6 6 6 30 

80 0 6 6 6 6 6 30 

Totals 24 24 24 24 24 24 144 

 
Tabla 2 

 
Parameter Estimate 

𝛼𝛼 4.3544 

𝛽𝛽! -1.4980 

𝛽𝛽" 349.3925 

 
Table 3 

 
Temperature 

(°C) 𝝁𝝁$𝒌𝒌 𝝀𝝀& 

50 103.79 

146.69 
60 100.48 

70 97.45 

80 94.68 

 
Temperature (°C) 𝝁𝝁$𝒌𝒌 𝝀𝝀& 

50 103.79 

146.69 
60 100.48 

70 97.45 

80 94.68 

 
Table 4 

 
Temperature 

(°C) 
𝑳𝑳𝒌𝒌 

50 1.10 

60 1.14 

70 1.17 

80 1.21 

 
Temperature (°C) 𝑳𝑳𝒌𝒌 

50 1.10 

60 1.14 

70 1.17 

80 1.21 

 
 

FIGURE 3. Accelerated Degradation Destructive Test 
Conditions. A group of catheters (1) is taken and 

conditioning in an aqueous medium at 37 °C ± 2 °C for a 
period of 2 hours (2) to reflect the expected clinical 

conditions. A gauge length in the Chatillon and test piece is 
measurement at 10 mm (3 and 4). The test piece is placed 

between the Chatillon’s clamps and a test speed of 200 
mm/min is programed. The upper clamp is raising (5) until 

the test piece separates into two or more pieces (6).
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Test Results 
The degradation data obtained from the tensile 

strength tests are shown from Fig. 3 to Fig.6 for the 
thermal stress levels of 50 °C, 60 °C, 70 °C, and 80 °C 
respectively. From these figures, it can be observed that 
the tensile strength increases and decreases over time. 
For this reason, we adopt a Wiener process to character-

ize the degradation evolution of the DUT. Furthermore, 
it can be noted that in all temperature levels a set of six 
catheters were tested to measure their tensile strength 
with no accelerated aging, i.e., these catheters were 
tested at a room temperature condition of 23 °C. It can 
be noted that at room temperature, the tensile strength 
is between 60 and 80 N in all temperature levels. This 

FIGURE 4. Behavior of the tensile strength 
degradation at 50 °C. The horizontal line at 15 N 

is the degradation critical level.

FIGURE 5. Behavior of the tensile strength 
degradation at 60 °C. The horizontal line at 15 N 

is the degradation critical level.

FIGURE 6. Behavior of the tensile strength 
degradation at 70 °C. The horizontal line at 15 N 

is the degradation critical level.

FIGURE 7. Behavior of the tensile strength 
degradation at 80 °C. The horizontal line at 15 N 

is the degradation critical level.
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variation is expected according to the specifications of 
the product. Moreover, in all temperature levels, it can 
be noted that the higher tensile strength is observed at 
15 days of temperature aging. Then, from day 30 to day 
75, the tensile strength diminishes, as may be expected 
given the high temperature exposure. Specifically in 
day 30, it can be noted that at 50 °C the six DUT are 
overlapped at a tensile strength of 80 N approximately. 
However, from temperature 60 °C to 80 °C it can be 
noted that the strengths of the six DUT are more 
disperse and tend to be lower, this indeed is also due to 
effect of the higher temperature levels. Similar behav-
iors can be noted at days 45 and 60, where the tensile 
strength tends to be lower as the temperature increases. 
It should be noted that the distal tip is a polymer that is 
bonded to the catheter shaft trough thermal fusion. 
Although, it is clear that the temperature affects the 
strength of the polymer bond, it appears that the tensile 
strength increases at 15 days of temperature exposure 
in all temperature levels, this may be due to the effect 
of the temperature on the polymeric bond.

 According to ISO 10555-1: 2013, a failure occurs when 
the tensile strength of the DUT reaches a critical level 
below 15 N [26]. Another difference of behaviors can be 
noted based on this critical level. Specifically at 75 
days of exposure, it can be noted that from tempera-
tures 50 °C to 70 °C none of the six DUT tensile 
strengths approaches to the critical level. However, 
the tensile strength for one DUT for the temperature 
level of 80 °C is below the critical level of 15 N, and the 
tensile strengths for the rest of the devices are close to 
this critical level. 

Theory and Modeling
In this section, the used methodology in this study is 

described as the Wiener process with the drift param-
eter being considered as a function of the thermal 
stress level, in this case, the Arrhenius function, along 
with the parameter estimation method using maxi-
mum likelihood (MLE). In addition, the degradation 

model formulation allows performing the estimated 
times to failure and an accelerated aging factor in each 
thermal stress level. 

Wiener Process and Arrhenius Relationship 
The appropriate model for non-monotone degrada-

tion process as can be noted in Figures 3 to 6, is a 
Wiener process, which is defined as in Equation (2).

(2)

 Where α is a drift parameter, the parameter σ is known 
as the diffusion, and B(t) is the Standard Wiener pro-
cess. It is well known that the drift parameter α 
describes the rate of the degradation process. In this 
paper, it is represented as a function of the thermal 
stress level, the diffusion parameter σ represents the 
common degradation characteristics to all units in a 
population [7]. Thus, if an ADDT is considered the deg-
radation measurements Xik (tj) of ith unit i, i= 1, ..., n at 
the corresponding time tj, j= 1, ..., m for thermal stress 
level k, k= 1, ..., r are obtained. Per the independent 
increment property of the Wiener process, then ∆Xik 
(tj)= Xik (tj)-Xik (tj-1) are normally distributed ∆Xik 
(tj)~f(α∆tijk, σ ∆tijk), thus the probability density function 
(PDF) f(α∆tijk, σ ∆tijk) has the form as in Equation (3).

(3)

In Equation (3) α is the Arrhenius function given that 
ADDT uses a thermal stress. Arrhenius function is 
described as in Equation (4).

(4)

Where k is the reaction rate constant; A is frequency 
factor (a constant to be estimated); Ea is the Energy of 
activation (KJ/mol); R is ideal gas constant (8.314 KJ/
mol); and T is reaction temperature (°K). So that, (4) 
can be denoted as in Equation (5).
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(5)

Where A= β1, and Ea/R= β2, for each thermal stress 
level Tk.

Parameters Estimation 
For the PDF of the Wiener process in (3), there is a set 

of parameters denoted as θ= (β1, β2, σ) that need to be 
estimated. MLE was the parameter estimation method 
selected to obtain the model parameters in terms of 
the available degradation data. 

Based on Equation (3), then the log-likelihood func-
tion for n test units, m measurements, and k stress 
levels can be denoted as in Equation (6).

(6)
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The first partial derivatives of Equation (6) with 
respect to the unknown parameters θ are given in 
Equations (7), (8), and (9) for β1, β2, σ respectively. 
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	𝜕𝜕	𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿.𝜎𝜎F, 𝛽𝛽H!, 𝛽𝛽H*0
𝜕𝜕𝜎𝜎F = 
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⎣
⎢
⎢
⎡
−
1
𝜎𝜎 +

;∆𝑋𝑋.𝑡𝑡')(0 − 𝛽𝛽! exp ;−
𝛽𝛽*
𝑅𝑅(
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⎢
⎢
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⎡ 𝜕𝜕

* ln 𝐿𝐿
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*
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𝜕𝜕* ln 𝐿𝐿
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𝜕𝜕* ln 𝐿𝐿
𝜕𝜕𝛽𝛽*	𝜕𝜕𝜎𝜎
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(8)

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑄𝑄!"∆$/!" 

 
 

𝑋𝑋(𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝜎𝜎𝜎𝜎(𝑡𝑡) 
 
 

𝑓𝑓&.∆𝑋𝑋'((𝑡𝑡))0 =
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22𝜋𝜋𝜎𝜎*∆𝑡𝑡')(
		𝑒𝑒

+,∆-,.!"#/+0∆.!"#	/
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(9)

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑄𝑄!"∆$/!" 

 
 

𝑋𝑋(𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝜎𝜎𝜎𝜎(𝑡𝑡) 
 
 

𝑓𝑓&.∆𝑋𝑋'((𝑡𝑡))0 =
1
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+,∆-,.!"#/+0∆.!"#	/
%
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𝑘𝑘 = 𝐴𝐴 exp ;−
𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅A 

 
 

𝛼𝛼(𝑅𝑅() = 𝛽𝛽! exp ;−
𝛽𝛽*
𝑅𝑅(
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⎢
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⎢
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𝜕𝜕𝛽𝛽!	𝜕𝜕𝛽𝛽*

𝜕𝜕* ln 𝐿𝐿
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𝜕𝜕* ln 𝐿𝐿
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Then, the MLE of θ can be obtained by solving and 
maximizing the equations presented in Equations (7), 
(8), and (9). However, this calculation requires an iter-
ative procedure, in this paper we considered the 
Newton-Raphson method, so that the Hessian or 
matrix of second partial derivatives of the log-likeli-
hood function in Equation (6) is required. Let H denote 
the Hessian which is described in (10).

(10)

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑄𝑄!"∆$/!" 

 
 

𝑋𝑋(𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝜎𝜎𝜎𝜎(𝑡𝑡) 
 
 

𝑓𝑓&.∆𝑋𝑋'((𝑡𝑡))0 =
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The second partial derivatives of Equation (6) with 
respect to the unknown parameters that conform the 
Hessian in (10) are given in Equations (11), (12), (13), 
(14), (15), and (16) for β1, β2, σ, β1β2, β1σ, β2σ respectively.
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𝑋𝑋(𝑡𝑡) = 𝛼𝛼𝑡𝑡 + 𝜎𝜎𝜎𝜎(𝑡𝑡) 
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First-Passage Time (Time to Failure) 
The failure of the DUT will occur if the degradation 

trajectory given for the tensile strength reaches cer-
tain critical degradation level, namely, when the ten-
sile force is below of 15 N according to ISO 10555-1: 
2013. For this given critical level indicated as ω, the 
lifetime Tω of the DUT is then defined as the first 
instant at which the trajectory X(t)t≥0 exceeds the level 
ω= 15 N [26] [27]. On the other hand, as the degradation 
process is described by a Wiener process as in Equation 
(3), then the first-passage time Tω follows an Inverse 
Gaussian distribution Tω ~ f(tω|μ= ω/α̂k, λ= ω2/σ2) with 
cumulative distribution function (CDF) described as 
F(tω)= 1-R(tω), where R(tω) is defined in Equation (17).
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 Acceleration Factor
The acceleration factor is a calculated ratio of time to 

achieve the same level of physical property change at 
a stress accelerated and the use level condition (ASTM 
F1980, 2016). The acceleration factor denoted as L 
between a use level and a greater level of stress can be 
described as in Equation (18).
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For the Arrhenius function in Equation (5), the acceler-
ation factor in Equation (18) can be described as in 
Equation (19).
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Where Lk is given for each thermal stress level Tk. 
Simplifying the acceleration factor in Equation (19), 
can be calculated as in Equation (20).
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RESULTS AND DISCUSSIONS 
In this section, the degradation modeling framework and 

the parameter estimates are presented to calculate the first 
passage time (times to failure) distribution, and accelera-
tion factor using them as a reliability estimation approach.

Parameter Estimation
The parameters of interest θ= (β1, β2, σ were estimated 

via MLE. The maxLik function in the R software was 
used to solve and maximize the log-likelihood func-
tion in (6) [28]. The code presented in Appendix A was 
considered and the obtained estimations for the 
parameters are presented in Table 2. By obtaining θ̂ , as 
previously discussed, the first passage time (time to 
failure) distribution and the acceleration factor can be 
calculated for each thermal stress level Tk.

TABLE 2. Estimation of parameters for the Wiener process.

Tabla 1 
 

Temperature 
(°C) 

Days  

0 15 30 45 60 75 

-- 24 0 0 0 0 0 24 

50 0 6 6 6 6 6 30 

60 0 6 6 6 6 6 30 

70 0 6 6 6 6 6 30 

80 0 6 6 6 6 6 30 

Totals 24 24 24 24 24 24 144 

 
Tabla 2 

 
Parameter Estimate 

𝛼𝛼 4.3544 

𝛽𝛽! -1.4980 

𝛽𝛽" 349.3925 

 
Table 3 

 
Temperature 

(°C) 𝝁𝝁$𝒌𝒌 𝝀𝝀& 

50 103.79 

146.69 
60 100.48 

70 97.45 

80 94.68 

 
Temperature (°C) 𝝁𝝁$𝒌𝒌 𝝀𝝀& 

50 103.79 

146.69 
60 100.48 

70 97.45 

80 94.68 

 
Table 4 

 
Temperature 

(°C) 
𝑳𝑳𝒌𝒌 

50 1.10 

60 1.14 

70 1.17 

80 1.21 

 
Temperature (°C) 𝑳𝑳𝒌𝒌 

50 1.10 

60 1.14 

70 1.17 

80 1.21 

 
 

Estimated First-Passage Time 
Once the parameters of interest of the Wiener pro-

cess, and the Arrhenius function were estimated from 
the degradation data of the DUTs, the first-passage 
time distributions for each thermal stress level were 
calculated. The dinvGauss function in the R software 
was used to characterize the PDF in (17), while pinv-
Gauss function was used to characterize the cumula-
tive distribution function (CDF) and reliability func-
tion R(t) [28]. The IG distribution mean μ̂k, and scale λ̂ 
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estimated are presented in Table 3. It can be easily 
found that the time to failure mean (μ̂) expressed in 
days becomes smaller as the thermal stress level 
increases. For 50 °C, the time to failure mean is ~104 
days while for 80 °C is ~95 days. This result is related to 
the molecular weight that gives to polymers their stiff-
ness. The higher the molecular weight, the higher 
stiffness, and higher tensile strength. The molecular 
weight and stiffness vary for each polymer being the 

TABLE 3. First passage time distributions 
parameters for the different stress levels.

Tabla 1 
 

Temperature 
(°C) 

Days  

0 15 30 45 60 75 

-- 24 0 0 0 0 0 24 

50 0 6 6 6 6 6 30 

60 0 6 6 6 6 6 30 

70 0 6 6 6 6 6 30 

80 0 6 6 6 6 6 30 

Totals 24 24 24 24 24 24 144 

 
Tabla 2 

 
Parameter Estimate 

𝛼𝛼 4.3544 

𝛽𝛽! -1.4980 

𝛽𝛽" 349.3925 

 
Table 3 

 
Temperature 

(°C) 𝝁𝝁$𝒌𝒌 𝝀𝝀& 

50 103.79 

146.69 
60 100.48 

70 97.45 

80 94.68 

 
Temperature (°C) 𝝁𝝁$𝒌𝒌 𝝀𝝀& 

50 103.79 

146.69 
60 100.48 

70 97.45 

80 94.68 

 
Table 4 

 
Temperature 

(°C) 
𝑳𝑳𝒌𝒌 

50 1.10 

60 1.14 

70 1.17 

80 1.21 

 
Temperature (°C) 𝑳𝑳𝒌𝒌 

50 1.10 

60 1.14 

70 1.17 

80 1.21 

 
 

FIGURE 8. The PDF of all thermal stress 
conditions and use condition.

FIGURE 9. The CDF of all thermal stress 
conditions and use condition.

FIGURE 10. The R(t) function of all thermal stress 
conditions and use condition.

FIGURE 11. The H(t) function of all thermal stress 
conditions and use condition.
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TABLE 4. Estimated acceleration  
actor for each temperature.

Tabla 1 
 

Temperature 
(°C) 

Days  

0 15 30 45 60 75 

-- 24 0 0 0 0 0 24 

50 0 6 6 6 6 6 30 

60 0 6 6 6 6 6 30 

70 0 6 6 6 6 6 30 

80 0 6 6 6 6 6 30 

Totals 24 24 24 24 24 24 144 

 
Tabla 2 

 
Parameter Estimate 

𝛼𝛼 4.3544 

𝛽𝛽! -1.4980 

𝛽𝛽" 349.3925 

 
Table 3 

 
Temperature 

(°C) 𝝁𝝁$𝒌𝒌 𝝀𝝀& 

50 103.79 

146.69 
60 100.48 

70 97.45 

80 94.68 

 
Temperature (°C) 𝝁𝝁$𝒌𝒌 𝝀𝝀& 

50 103.79 

146.69 
60 100.48 

70 97.45 

80 94.68 

 
Table 4 

 
Temperature 

(°C) 
𝑳𝑳𝒌𝒌 

50 1.10 

60 1.14 

70 1.17 

80 1.21 

 
Temperature (°C) 𝑳𝑳𝒌𝒌 

50 1.10 

60 1.14 

70 1.17 

80 1.21 

 
 

polymer of the distal tip with the lowest stiffness and 
molecular weight, thus lowest tensile strength. 
Additionally, a difference of three days for μ̂k is noted 
among all temperatures tested, which means that for 
10°C of temperature increase, the time to failure mean 
increases three days. The PDF, CDF, reliability func-
tion R(t), and hazard function h(t) of the DUT for all 
thermal stress conditions and use condition are 
depicted in Figure 8 up to Figure 11 respectively.

Considering, a storage or use condition temperature 
of 23 °C, it can be observed from Figure 8 that the PDF 
is lower in comparison to greater thermal stress level. 
Figure 9 and Figure 10 showed the CDF and their func-
tion of complement, which is the reliability function 
R(t). It is noted that the reliability function R(t) is 
greater for the DUT that are storage at use condition 
temperature in comparison to the DUT storage at 80°C. 
Also, it is noted that the reliability of the DUT storage 
at use condition differs from the shelf life claimed in 
the labeling. Otherwise, the hazard function h(t) in 
Figure 11 is lower for the DUT storage at condition 
temperature in comparison to DUT storage at 80 °C. 
Additionally, from Figure 10, it can be noted that the 
reliability of the DUTs rapidly decreases from day 60 to 
day 250 in all temperature levels. On the other hand, 
from Figure 11, it can be noted that the hazard rate 
rapidly increases until 150 days approximately and the 
stabilizes from then on. This behavior suggests that 
the probability of instant failure is low at 0 days of 
exposure to the thermal stress, then the probability 
increases and stabilizes as more days of thermal expo-
sure are considered.

It should be noted that the van’t Hoff’s observation is 
an empirical method that has been deemed as conser-
vative [2]. Furthermore, this method is used as an 
acceleration factor to estimate the time that is needed 
to subject a DUT under a thermal stress in the aims of 
simulate certain shelf life. Therefore, the aging test 
results in a reliability demonstration test, that consid-

ers the estimated time to subject the DUT under the 
accelerated thermal stress to finally test the DUT and 
demonstrate that the DUT has a successful perfor-
mance, i.e., the tensile strength is higher than 15 N. 
Indeed, the ADDT presented in this study differs from 
this approach, given that it presents the possibility of 
modeling the behavior of the characteristic of interest 
under a certain stress factor, such that it is possible to 
determine a failure for a defined critical value of the 
characteristic under a determined stress level. This 
modeling of the evolution of the characteristic of inter-
est complements the reliability estimation of the DUT 
beyond a reliability demonstration plan.

Estimated Acceleration Factors
The parameters of interest of the Arrhenius function 

denoted as β1 and β2 were estimated from the degrada-
tion data of the DUT. These parameters were used to 
calculate the acceleration factor for each thermal stress 
level based on the function in (19). The acceleration 
factor estimated is presented in Table 4.

From Table 4 it can be easily found that the accelera-
tion factor becomes smaller as the thermal stress 
decreases. For 50 °C, the acceleration factor is 1.10 
while for 80 °C is 1.21. That means that the ratio of time 
to achieve the same level of change in the tensile 
strength tends to be one, as the accelerated tempera-
ture approaches to the temperature of the normal use 
condition. Otherwise, a higher acceleration factor com-
pensates for the effect of thermal stress to estimate the 
normal use condition. These acceleration factors are 
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smaller compared to the ones that can be estimated 
based on the van’t Hoff’s observation. As previously 
discussed, the van’t Hoff AAF tends to stablish conser-
vative estimations. Based on the function in (1) and the 
estimated acceleration factors in Table 4, the Q10 that 
must be considered for the characteristic studied in 
this paper results in Q10= 1.03. This differs from the 
Q10= 2 empirical value which may result in early failure 
of the DUT, even before their expiration date.

CONCLUSIONS
This paper presents an ADDT as an alternative to the 

accelerated-aging policies based on standards and 
guidelines.

Many accelerated aging methodologies are available 
to evaluate the reliability of the medical devices during 
their design and development. However, currently, 
there is not an official method. ADDT performed in 
this study can be used as a helpful custom method 
based on a critical performance characteristic of the 
medical device specifically intravascular catheters, 
under the assumption that the tensile strength follows 
a Wiener process and the constant-stress loading used 
is the temperature. It is noted that the proposed 
method can determine the lifetime distribution in 
function of time and thermal stress levels to provide 
data that support the shelf life, and the storage ambi-
ent conditions claimed in the medical device labeling. 
However, the results to support the shelf life found in 
this study differs from the results obtained from the 
traditional method of accelerated aging Q10= 2. 
Therefore, real-time aging data continue to be neces-
sary to validate the shelf life. 

Future work could tackle several topics, one of them is 
to estimate the Ea as a random parameter. The constant 
activation energy and constant reactant concentrations 
is an assumption that has been used in this study. This 
assumption may be evaluated differently, as a parame-
ter to be estimated to provide a highly accurate estimate 
of real performance. Another topic, consist in consider 
the unit-to-unit heterogeneity, in theory, the intravas-
cular catheters use the same materials and manufactur-
ing process, however, in the practice there are differ-
ences, so that, the degradation rates for the individual 
system are different. For this reason, the heterogeneity 
among the units should be incorporated into the Wiener 
process in the diffusion parameter. Finally, as a valida-
tion process it may be possible to test intravascular cath-
eters under a certain condition until failure in the aims 
of confirm the MTTF estimation presented in this paper. 
Finally, an important topic for future research may be to 
subject an efficient sample size of DUTs to validate the 
estimated MTTFs for every temperature level. Although, 
it must be considered that the accelerated test is destruc-
tive with constant stress levels, which means that the 
equipment’s must be used for large periods.
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APPENDIX A. Estimation code

#Loglikelihood function
loglik<-function(param){
a<-param[1]
b<-param[2]
s<-param[3]
ll<- -((r*n*m/2)*log(2*pi))-(0.5*sum(log(t)))-
(r*n*m*log(s))-sum(((y-(a*t*exp(-b/T)))^2)/(2*t*(s^2))) 
ll }

#Gradient
loglikGrad <- function(param) {
a<-param[1]
b<-param[2]
s<-param[3]
loglikGradValues <- numeric(3)
loglikGradValues[1] <- 
sum(((y-(a*t*exp(-b/T)))*exp(-b/T))/(s^2))
loglikGradValues[2] <- -sum(((y-(a*t*exp(-b/T)))*( 
(a/T)*exp(-b/T) )) / (s^2) )
loglikGradValues[3] <- -((r*n*m)/s) + sum(((y- (a*t*ex-
p(-b/T)))^2)/ (t*(s^3)))
return(loglikGradValues) }

#Hessian
loglikHess <- function(param) {
a <- param[1]
b <- param[2]
s <- param[3]
loglikHessValues <- matrix(0, nrow = 3, ncol = 3)
loglikHessValues[1, 1] <- sum((-t*exp(-((2*b)/T)))/ 
(s^2))
loglikHessValues[1, 2] <- 
sum(((((2*a*t)/T)*exp(-((2*b)/T)))-((y/T)*exp(-b/T))) / 
(s^2))
loglikHessValues[1, 3] <- -2*sum(  
((y-(a*t*exp(-b/T)))*exp(-b/T)) / (s^3) )
loglikHessValues[2, 1] <- loglikHessValues[1, 2]
loglikHessValues[2, 2] <- -sum( (((2*t*(a^2))/
(T^2))*exp(-((2*b)/T)))-(((y*a)/T)*exp(-b/T))/(s^2))
loglikHessValues[2, 3] <- 2*sum( ((y-(a*t*exp(-b/T)))*( 
(a/T)*exp(-b/T) )) / (s^3) )
loglikHessValues[3, 1] <- loglikHessValues[1, 3]
loglikHessValues[3, 2] <- loglikHessValues[2, 3]
loglikHessValues[3, 3] <- ((r*n*m)/(s^2))- sum((3*((y - 
( a*t*exp(-b/T) ) )^2))/ (t*(s^4)) )
return(loglikHessValues)}

mleHess<- maxLik(logLik = loglik,loglikGrad, log-
likHess, start = c(a=1,b=100,s=4),method="NR")
summary(mleHess)


